Skip to content

Category:Amazon

Computers for sale amazon

Date: 24.11.2020
Author: Sharath B M

computers for sale amazon

But retail sales are still at the heart of what Amazon does, and three of Amazon's 10 CVPR papers report ways in which computer vision could help customers. Online shopping for Electronics from a great selection of Computer Accessories & Peripherals, Tablet Accessories, Laptop Accessories. Online shopping for Electronics from a great selection of Traditional Laptops, 2 in 1 Laptops & more at everyday low prices.

Related Videos

5 Best Mini PC 2021 You Can Buy On Amazon

Computers for sale amazon -

Email The IEEE Conference on Computer Vision and Pattern Recognition CVPR is the premier conference in the field of computer vision, and the Amazon papers accepted there this year range in topic from neural-architecture search to human-pose tracking to handwritten-text generation.

One paper describes a system that lets customers sharpen a product query by describing variations on a product image. A second paper reports a system that suggests items to complement those the customer has already selected, based on features such as color, style, and texture. The third paper reports a system that can synthesize an image of a model wearing clothes from different product pages, to demonstrate how they would work together as an ensemble.

All three systems use neural networks. A query image left is combined with images from different product pages to produce a synthetic composite right. Visiolinguistic product discovery Using text to refine an image that matches a product query poses three main challenges. The first is finding a way to fuse textual descriptions and image features into a single representation.

And the third is training the network to preserve some image features while following customers' instructions to change others.

Essentially, the three inputs pass through three different neural networks in parallel. But at three distinct points in the pipeline, the current representation of the source image is fused with the current representation of the text, and the fused representation is correlated with the current representation of the target image. A new system that enables textual modification of product images fuses visual and linguistic information at three different levels of a neural network, to accommodate different degrees of textual granularity.

Each fusion of linguistic and visual representations is performed by a neural network with two components. One component uses a joint attention mechanism to identify visual features that should be the same in the source and target images. The other is a transformer network that uses self-attention to identify features that should change. Complementary-item retrieval In the past, researchers have developed systems that took outfit items as inputs and predicted their compatibility, but these systems were not optimized for large-scale data retrieval.

Amazon applied scientist Yen-Liang Lin and his colleagues wanted a system that would enable product discovery at scale, and they wanted it to take multiple inputs, so that a customer could, for instance, select shirt, pants, and jacket and receive a recommendation for shoes.

The network they devised takes as inputs any number of garment images, together with a vector indicating the category of each — such as shirt, pants, or jacket. It also takes the category vector of the item the customer seeks. The images pass through a convolutional neural network that produces a vector representation of each.

The masks are learned during training, and the resulting representations encode product information such as color and style relevant to only a subset of complementary items. That is, some of the representations that result from the masking — called subspace representations — will be relevant to shoes, others to handbags, others to hats, and so on.

The architecture of the neural network used for complementary-item retrieval. From vectors representing the product categories of both input items and a target item, the network produces a set of weights w1 — wk that indicate which input-item features should be prioritized in selecting a complementary item. In parallel, another network takes as input the category for each input image and the category of the target item.

Its output is a set of weights, for prioritizing the subspace representations. The network is trained using an evaluation criterion that operates on the entire outfit. Each training example includes an outfit, an item that goes well with that outfit, and a group of items that do not. Once the network has been trained, it can produce a vector representation of every item in a catalogue. Finding the best complement for a particular outfit is then just a matter of looking up the corresponding vectors.

Virtual try-on network Previously, researchers have trained machine learning systems to synthesize images of figures wearing clothes from different sources by using training data that featured the same garment photographed from different perspectives.

But that kind of data is extremely labor intensive to produce. A GAN has a component known as a discriminator, which, during training, learns to distinguish network-generated images from real images. Simultaneously, the generator learns to fool the discriminator. The first is the shape generation network, whose inputs are a query image, which will serve as the template for the final image, and any number of reference images, which depict clothes that will be transferred to the model from the query image.

That shape representation passes to a second network, called the appearance generation network. The architecture of the appearance generation network is much like that of the shape generation network, except that it encodes information about texture and color rather than shape.

The representation it produces is combined with the shape representation to produce a photorealistic visualization of the query model wearing the reference garments. The third component of the network fine-tunes the parameters of the appearance generation network to preserve features such as logos or distinctive patterns without compromising the silhouette of the model.

The outputs of the new system are more natural looking than those of previous systems. In the figure below, the first column is the query image, the second the reference image, the third the output of the best-performing previous system, and the fourth and fifth the outputs of the new system, without and with appearance refinement, respectively.

Research areas.

computers for sale amazon

: Computers for sale amazon

HOW TO ACTIVATE US BANK RELIACARD 853
Computers for sale amazon Walmart money center brown deer
Computers for sale amazon The network they devised takes as inputs any number computers for sale amazon garment images, together with a vector computers for sale amazon the category of each — such as shirt, pants, or jacket. Viewing angles could be limited, which is tolerable unless you routinely need to share your screen. That shape representation passes to a second network, called the appearance generation network. Please attempt to sign up again. Dimensions and weight: Many cheaper laptops are larger, heavier models. Get Full HD x resolution if you can.
But at three distinct points in the pipeline, the current representation of the source image is fused with computers for sale amazon current representation of the text, and the fused representation is correlated with the current representation of the target image. Once the network has been trained, it can produce a vector representation of every item in a catalogue. Look in particular computers for sale amazon the Core iU and the modestly revamped iU, a pair of quad-core processors that can ably juggle mainstream tasks. We advocate for a inch or A query image left is combined with images from different product pages to produce a synthetic composite right.

Share :

Leave a Reply

Your email address will not be published.Required fields are marked *

*

*

1 thought on Computers for sale amazon